Categories
Meetings

DelBERTo: A Deep Lightweight Transformer for Sentiment Analysis

Where: Sala conferenze (3th floor)
When: January 26, 2024, 11:30

Luca Molinaro is a PhD student from our 39th cycle, and he will present his work titled ‘DelBERTo: A Deep Lightweight Transformer for Sentiment Analysis,’ which has been accepted at AIxIA 2022. Please find the abstract below.

Abstract:  
This article introduces DelBERTo, a resource-efficient Transformer architecture for Natural Language Processing (NLP). Transformers replace convolutions and recurrence with the self-attention mechanism and represent the state-of-the-art in NLP. However, self-attention’s complexity grows quadratically with the size of the input, which limits their applications. DelBERTo relies on adaptive input and on a deep yet lightweight Transformer architecture to reduce the number of learnable parameters, and relies on adaptive softmax to improve pre-training speed and memory footprint. We evaluate the proposed architecture in a sentiment analysis task and compare it against AlBERTo, a BERT model representing the state-of-the-art in sentiment analysis over Italian tweets. DelBERTo has only one-seventh of AlBERTo’s learnable parameters, is faster, and requires less memory. Despite this, our experiments show that DelBERTo is competitive with AlBERTo over the three SENTIPOLC sub-tasks proposed at EVALITA 2016: subjectivity classification, polarity classification, and irony detection.

Categories
Meetings

Large Acoustic Models: another challenge for the ecological AI world

Where: Sala conferenze (3th floor)
When: January 31, 2024, 3pm

Francesco Cutugno is associate professor of Natural Language Processing and Interaction Design (within the frame of the Software Engineering courses) at the University of Naples Federico II. From 2013 to 2018 he was the Italian Association of Speech Sciences president. He is presently a member of the board of the Italian Association of Computational Linguistics. Francesco Cutugno directs Urban/Eco an interdepartmental research center devoted to the study of applications of Artificial Intelligence to conversational agents, applications in architecture, and cultural heritage and language.

Abstract:  
These days, many nations, many researchers belonging to public institutions, and many research organizations are attempting the aim of building public, freely accessible, Large (Generative) Language Models (LLM). The enterprise also requires the collection of the huge amount of training data normally required to pursue this purpose. Similarly, another fundamental goal of public research should be to provide the scientific community with AI-based Automatic Speech Recognition systems that, equivalently to LLMs, require massive computational load, infrastructures, and thousands of hours of audio data both labeled and unlabeled. In analogy with LLM, we call these systems Large Acoustic Models (LAM). My talk will deal with the leading technologies in this field, will describe the needed data profile, and will propose alternatives to the current approaches aiming at partly simplifying the complexity of the task of transcribing speech. Some conclusive remarks will be devoted to some aspects of explainability hidden in the DNN approach to the problem.